Audio signal Analysis, Indexing and Transformations
G. RICHARD, R.BADEAU
ModellingSignal processing

Prè-requis

Basics of signal processing..

Objectif du cours

The aim of this course is to span several domains of audio signal analysis including audio indexing (or machine listening), high-resolution audio spectral analysis, audio source separation, and audio transformations (3D sound rendering, sound effects and sound modifications).

Presentation : here

Organisation des séances

 

  • 13,5 h theoretical lectures
  • 10,5 h practical sessions (TP) in Matlab (or Python if preferred)
  • Lectures are planned to be in French but slides will be in English

 

Mode de validation

Papers reading/analysis with written report and oral presentation.

Références

  • Y. Grenier, R. Badeau, G. Richard « Polycopiés de cours sur le traitement du signal audio (in French) », Télécom ParisTech.
  • M. Mueller, D. Ellis, A. Klapuri, G. Richard, Signal Processing for Music Analysis », IEEE Journ. on Selected Topics in Sig. Proc., October 2011..

Plus d’information…

Thèmes abordés

  • Audio Indexing (machine Listening): audio signal analysis for content-based information retrieval  (automatic music genre recognition, automatic musical instrument identification, tempo or downbeat estimation,…).
  • Audio Transformations (3D rendering, sound effects, sound modifications): Physical and perceptual approaches (binaural/transaural techniques, head-related transfer functions, wave field synthesis,..). Digital sound effects (flanger, phaser, distortion, artificial reverberation,..). Timbral, scale and pitch modifications.
  • Audio Source Separation: Audio demixing, linear and convolutive mixing models, underdetermined models, sparse models, DUET.
  • High resolution audio spectral analysis: Sinusoidal models, beyond Fourier analysis, spectral MUSIC, ESPRIT
Les intervenants

Gaël Richard

(Télécom Paris)

Roland Badeau

(Télécom Paris)

voir les autres cours du 2nd semestre